The Causality between Human Immunoglobulin G (IgG) N-Glycosylation and Aging: A Mendelian Randomization Study

Molecules. 2024 Mar 14;29(6):1281. doi: 10.3390/molecules29061281.

Abstract

Background: Immunoglobulin G (IgG) N-glycosylation is considered a potential biomarker for aging and various pathological conditions. However, whether these changes in IgG N-glycosylation are a consequence or a contributor to the aging process remains unclear. This study aims to investigate the causality between IgG N-glycosylation and aging using Mendelian randomization (MR) analysis.

Methods: We utilized genetic variants associated with IgG N-glycosylation traits, the frailty index (FI), and leukocyte telomere length (LTL) from a previous genome-wide association study (GWAS) on individuals of European ancestry. Two-sample and multivariable MR analyses were conducted, employing the inverse-variance weighted (IVW) method. Sensitivity analyses were performed to assess potential confounding factors.

Results: Using the IVW method, we found suggestive evidence of a causal association between GP14 and FI (β 0.026, 95% CI 0.003 to 0.050, p = 0.027) and LTL (β -0.020, 95% CI -0.037 to -0.002, p = 0.029) in the two-sample MR analysis. In the multivariable MR analysis, suggestive evidence was found for GP23 and FI (β -0.119, 95% CI -0.219 to -0.019, p = 0.019) and GP2 and LTL (β 0.140, 95% CI 0.020 to 0.260, p = 0.023).

Conclusions: In conclusion, our results supported a potentially causal effect of lower GP23 levels on an advanced aging state. Additional verification is required to further substantiate the causal relationship between glycosylation and aging.

Keywords: IgG N-glycosylation; Mendelian randomization; frailty index; immune aging; leukocyte telomere length.

MeSH terms

  • Aging / genetics
  • Genome-Wide Association Study*
  • Glycosylation
  • Humans
  • Immunoglobulin G / genetics
  • Mendelian Randomization Analysis*

Substances

  • Immunoglobulin G