The calculated electronic and optical properties of β-Ga2O3 based on the first principles

J Mol Model. 2024 Apr 2;30(4):116. doi: 10.1007/s00894-024-05907-2.

Abstract

Introduction: The electronic and optical properties of β-Ga2O3 have been investigated by CASTEP using first principles. It is found that β-Ga2O3 has an indirect band gap and the conduction band base is located at the Γ point. The stability of β-Ga2O3 is demonstrated by the calculation of elastic constants, and the ductility of β-Ga2O3 is demonstrated by the ratio of Poisson's ratio to shear modulus. The optical property analysis shows that β-Ga2O3 has a high absorption capacity in the ultraviolet region, but a low absorption capacity in visible and infrared light.

Context: The structure, optical, and electronic properties of β-Ga2O3 are calculated and analyzed based on first-principles calculation. The optimized structures of β-Ga2O3 are in good agreement with previously studied. In this paper, the elastic, electronic, and optical properties of β-Ga2O3 are calculated.

Methods: The CASTEP code was employed to execute these calculations in the present work, where the exchange-correlation interactions were treated in the generalized gradient approximation (GGA) using the Perdew-Burke-Ernzerhof (PBE) functional in the geometry optimizations and electronic and elastic properties.

Keywords: First-principle; Optical properties; β-Ga O.