Bioremediation potential of the hard clam Mercenaria mercenaria as an intensive shrimp aquaculture pond polyculture condidate

Water Res. 2024 May 15:255:121552. doi: 10.1016/j.watres.2024.121552. Epub 2024 Mar 30.

Abstract

Polyculture practices are important for achieving sustainable aquaculture development. Recently, hard clams polyculture in intensive shrimp ponds has been encouraged because bivalves can consume excess nutrients in aquaculture systems and sequester carbon. To evaluate the bioremediation potential of hard clams polyculture in intensive shrimp ponds, this study built an assessment model based on individual growth models and estimated the potential for nitrogen and phosphorus removal as well as CO2 fixation by hard clams. Firstly, key parameters required for model construction were obtained through field surveys and physiological experiments. Subsequently, an individual growth model for the hard clam Mercenaria mercenaria was developed based on the Dynamic Energy Budget (DEB) theory. Fitting of the growth data indicated that the model accurately replicated the growth patterns of hard clams, with relative root mean square errors of 9.87 % for shell length and 5.02 % for dry tissue weight. Finally, the assessment model for the bioremediation potential of hard clams demonstrated that, over 110 days in the intensive shrimp mariculture pond, the net removal of nitrogen and phosphorus by hard clams were 3.68 kg ha-1 and 0.81 kg ha-1, respectively, and CO2 fixation was 507.00 kg ha-1. These findings suggested that the DEB model is an effective tool for evaluating bivalve ecological remediation potential and can aid in selecting species for sustainable polyculture.

Keywords: Assessment model; Bioremediation; DEB; Hard clam; Polyculture.