The insular cortex is involved in diverse processes, including bodily homeostasis, emotions, and cognition. However, we lack a comprehensive understanding of how it processes information at the level of neuronal populations. We leveraged recent advances in unsupervised machine learning to study insular cortex population activity patterns (i.e., neuronal manifold) in mice performing goal-directed behaviors. We find that the insular cortex activity manifold is remarkably consistent across different animals and under different motivational states. Activity dynamics within the neuronal manifold are highly stereotyped during rewarded trials, enabling robust prediction of single-trial outcomes across different mice and across various natural and artificial motivational states. Comparing goal-directed behavior with self-paced free consumption, we find that the stereotyped activity patterns reflect task-dependent goal-directed reward anticipation, and not licking, taste, or positive valence. These findings reveal a core computation in insular cortex that could explain its involvement in pathologies involving aberrant motivations.
Keywords: CP: Neuroscience; hunger; insula; insular cortex; machine learning; motivation; neural manifold; neuroscience; thirst; unsupervised learning.
Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.