Alignment-free coupling to arrays of diamond microdisk cavities with fabrication tolerant spin-photon interfaces

Opt Express. 2024 Mar 25;32(7):12054-12064. doi: 10.1364/OE.515620.

Abstract

We propose a design for an efficient spin-photon interface to a color center in a diamond microdisk. The design consists of a silicon oxynitride triangular lattice overlaid on a diamond microdisk without any aligmnent between the layers. This enables vertical emission from the microdisk into low-numerical aperture modes, with quantum efficiencies as high as 46% for a tin vacancy (SnV) center. Our design is robust to manufacturing errors, potentially enabling large scale fabrication of quantum emitters coupled to optical collection modes. We also introduce a novel approach for optimizing the free space performance of our device using a dipole model, achieving comparable results to full-wave finite difference time domain simulations with 7 · 106 reduction in computational time.