Human brain small extracellular vesicles contain selectively packaged, full-length mRNA

Cell Rep. 2024 Apr 23;43(4):114061. doi: 10.1016/j.celrep.2024.114061. Epub 2024 Apr 4.

Abstract

Brain cells release and take up small extracellular vesicles (sEVs) containing bioactive nucleic acids. sEV exchange is hypothesized to contribute to stereotyped spread of neuropathological changes in the diseased brain. We assess mRNA from sEVs of postmortem brain from non-diseased (ND) individuals and those with Alzheimer's disease (AD) using short- and long-read sequencing. sEV transcriptomes are distinct from those of bulk tissue, showing enrichment for genes including mRNAs encoding ribosomal proteins and transposable elements such as human-specific LINE-1 (L1Hs). AD versus ND sEVs show enrichment of inflammation-related mRNAs and depletion of synaptic signaling mRNAs. sEV mRNAs from cultured murine primary neurons, astrocytes, or microglia show similarities to human brain sEVs and reveal cell-type-specific packaging. Approximately 80% of neural sEV transcripts sequenced using long-read sequencing are full length. Motif analyses of sEV-enriched isoforms elucidate RNA-binding proteins that may be associated with sEV loading. Collectively, we show that mRNA in brain sEVs is intact, selectively packaged, and altered in disease.

Keywords: Alzheimer's disease; CP: Cell biology; CP: Neuroscience; RNA-Seq; RNA-binding proteins; exosomes; extracellular vesicles; human brain; long-read sequencing.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / genetics
  • Alzheimer Disease* / metabolism
  • Alzheimer Disease* / pathology
  • Animals
  • Astrocytes / metabolism
  • Brain* / metabolism
  • Extracellular Vesicles* / metabolism
  • Humans
  • Mice
  • Mice, Inbred C57BL
  • Microglia / metabolism
  • Neurons / metabolism
  • RNA, Messenger* / genetics
  • RNA, Messenger* / metabolism
  • Transcriptome / genetics

Substances

  • RNA, Messenger