Ponatinib and STAT5 Inhibitor Pimozide Combined Synergistic Treatment Applications Potentially Overcome Drug Resistance via Regulating the Cytokine Expressional Network in Chronic Myeloid Leukemia Cells

J Interferon Cytokine Res. 2024 Apr;44(4):178-189. doi: 10.1089/jir.2023.0170.

Abstract

Chronic myeloid leukemia (CML) is a clonal myeloproliferative hematological disease characterized by the chimeric breakpoint-cluster region/Abelson kinase1 (BCR::ABL1) oncoprotein; playing a pivotal role in CML molecular pathology, diagnosis, treatment, and possible resistance arising from the success and tolerance of tyrosine kinase inhibitor (TKI)-based therapy. The transcription factor STAT5 constitutive signaling, which is influenced by the cytokine signaling network, triggers BCR::ABL1-based CML pathogenesis and is also relevant to acquired TKI resistance. The unsuccessful therapeutic approaches targeting BCR::ABL1, in particular third-line therapy with ponatinib, still need to be further developed with alternative combination strategies to overcome drug resistance. As treatment with the STAT5 inhibitor pimozide in combination with ponatinib resulted in an efficient and synergistic therapeutic approach in TKI-resistant CML cells, this study focused on identifying the underlying amplification of ponatinib response mechanisms by determining different cytokine expression profiles in parental and ponatinib-resistant CML cells, in vitro. The results showed that expression of interleukin (IL) 1B, IL9, and IL12A-B was increased by 2-fold, while IL18 was downregulated by 2-fold in the ponatinib-resistant cells compared to sensitive ones. Importantly, ponatinib treatment upregulated the expression of 21 of the 23 interferon and IL genes in the ponatinib-resistant cells, while treatment with pimozide or a combination dose resulted in a reduction in the expression of 19 different cytokine genes, such as for example, inflammatory cytokines, IL1A-B and IL6 or cytokine genes associated with supporting tumor progression, leukemia stem cell growth or poor survival, such as IL3, IL8, IL9, IL10, IL12, or IL15. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis results showed that the genes were mainly enriched in the regulation of receptor signaling through the Janus kinase/signal transducer and activator of transcription pathway, cytokine-cytokine receptor interaction, and hematopoietic cell lineage. Protein-protein interaction analysis showed that IL2, IL6, IL15, IFNG, and others appeared in the top lists of pathways, indicating their high centrality and importance in the network. Therefore, pimozide could be a promising agent to support TKI therapies in ponatinib resistance. This research would help to clarify the role of cytokines in ponatinib resistance and advance the development of new therapeutics to utilize the STAT5 inhibitor pimozide in combination with TKIs.

Keywords: STAT5 inhibitor pimozide; combination therapy; cytokines; drug resistance; ponatinib.

MeSH terms

  • Cytokines / metabolism
  • Drug Resistance, Neoplasm / genetics
  • Fusion Proteins, bcr-abl / genetics
  • Fusion Proteins, bcr-abl / metabolism
  • Humans
  • Imidazoles*
  • Interleukin-15 / metabolism
  • Interleukin-15 / therapeutic use
  • Interleukin-6 / metabolism
  • Interleukin-9 / metabolism
  • Interleukin-9 / therapeutic use
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / drug therapy
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / genetics
  • Leukemia, Myelogenous, Chronic, BCR-ABL Positive* / pathology
  • Pimozide* / pharmacology
  • Pimozide* / therapeutic use
  • Protein Kinase Inhibitors / pharmacology
  • Protein Kinase Inhibitors / therapeutic use
  • Pyridazines*
  • STAT5 Transcription Factor / genetics
  • STAT5 Transcription Factor / metabolism

Substances

  • ponatinib
  • Pimozide
  • Cytokines
  • Fusion Proteins, bcr-abl
  • Protein Kinase Inhibitors
  • STAT5 Transcription Factor
  • Interleukin-15
  • Interleukin-6
  • Interleukin-9
  • Imidazoles
  • Pyridazines