Supervised machine learning for the prediction of post-operative clinical outcomes of hip and knee replacements: a review

ANZ J Surg. 2024 Apr 10. doi: 10.1111/ans.19003. Online ahead of print.


Prediction models are being increasingly used in the medical field to identify risk factors and possible outcomes. Some of these are presently being used to develop guidelines for improving clinical practice. The application of machine learning (ML), comprising a powerful set of computational tools for analysing data, has been clearly expanding in the role of predictive modelling. This paper reviews the latest developments of supervised ML techniques that have been used to analyse data related to post-operative total hip and knee replacements. The aim was to review the most recent findings of relevant published studies by outlining the methodologies employed (most-widely used supervised ML techniques), data sources, domains, limitations of predictive analytics and the quality of predictions.

Keywords: data; machine learning; predictive analytics; total hip replacement; total knee replacement.

Publication types

  • Review