Investigation of out-of-distribution detection across various models and training methodologies

Neural Netw. 2024 Apr 4:175:106288. doi: 10.1016/j.neunet.2024.106288. Online ahead of print.

Abstract

Machine learning-based algorithms demonstrate impressive performance across numerous fields; however, they continue to suffer from certain limitations. Even sophisticated and precise algorithms often make erroneous predictions when implemented with datasets having different distributions compared to the training set. Out-of-distribution (OOD) detection, which distinguishes data with different distributions from that of the training set, is a critical research area necessary to overcome these limitations and create more reliable algorithms. The OOD issue, particularly concerning image data, has been extensively studied. However, recently developed OOD methods do not fulfill the expectation that OOD performance will increase as the accuracy of in-distribution classification improves. Our research presents a comprehensive study on OOD detection performance across multiple models and training methodologies to verify this phenomenon. Specifically, we explore various pre-trained models popular in the computer vision field with both old and new OOD detection methods. The experimental results highlight the performance disparity in existing OOD methods. Based on these observations, we introduce Trimmed Rank with Inverse softMax probability (TRIM), a remarkably simple yet effective method for model weights with newly developed training methods. The proposed method could serve as a potential tool for enhancing OOD detection performance owing to its promising results. The OOD performance of TRIM is highly compatible with the in-distribution accuracy model and may bridge the efforts on improving in-distribution accuracy to the ability to distinguish OOD data.

Keywords: Explainable AI; Image classification; Label smoothing; Machine learning; Out-of-distribution detection.