Assessing greenhouse gas emissions from the printing and dyeing wastewater treatment and reuse system: Potential pathways towards carbon neutrality

Sci Total Environ. 2024 Jun 1:927:172301. doi: 10.1016/j.scitotenv.2024.172301. Epub 2024 Apr 8.

Abstract

The urgency of achieving carbon neutrality needs a reduction in greenhouse gas (GHG) emissions from the textile industry. Printing and dyeing wastewater (PDWW) plays a crucial role in the textile industry. The incomplete assessment of GHG emissions from PDWW impedes the attainment of carbon neutrality. Here, we firstly introduced a more standardized and systematic life-cycle GHG emission accounting method for printing and dyeing wastewater treatment and reuse system (PDWTRS) and proposed possible low-carbon pathways to achieve carbon neutrality. Utilizing case-specific operational data over 12 months, the study revealed that the PDWTRS generated 3.49 kg CO2eq/m3 or 1.58 kg CO2eq/kg CODrem in 2022. This exceeded the GHG intensity of municipal wastewater treatment (ranged from 0.58 to 1.14 kg CO2eq/m3). The primary contributor to GHG emissions was energy consumption (33 %), with the energy mix (sensitivity = 0.38) and consumption (sensitivity = 0.33) exerting the most significant impact on GHG emission intensity respectively. Employing prospective life cycle assessment (LCA), our study explored the potential of the anaerobic membrane bioreactor (AnMBR) to reduce emissions by 0.54 kg CO2eq/m3 and the solar-driven photocatalytic membrane reactor (PMR) to decrease by 0.20 kg CO2eq/m3 by 2050. Our projections suggested that the PDWTRS could achieve net-zero emissions before 2040 through an adoption of progressive transition to low-carbon management, with a GHG emission intensity of -0.10 kg CO2eq/m3 by 2050. Importantly, the study underscored the escalating significance of developing sustainable technologies for reclaimed water production amid water scarcity and climate change. The study may serve as a reminder of the critical role of PDWW treatment in carbon reduction within the textile industry and provides a roadmap for potential pathways towards carbon neutrality for PDWTRS.

Keywords: Greenhouse gas emission; Life cycle assessment; Low-carbon pathways; Net-zero emissions; Printing and dyeing wastewater.