Microstructure of the corneal endothelial transition zone in different laboratory animals

Mol Vis. 2024 Mar 17:30:107-113. eCollection 2024.

Abstract

Purpose: To compare the microstructure of the corneal endothelial transition zone in different laboratory animals.

Methods: Flat-mount corneas of rabbits, rats, and mice were stained with Alizarin Red S (ARS) and observed using scanning electron microscopy (SEM). The progenitor cell markers p75 neurotrophin receptor (p75NTR), SRY-box transcription factor 9 (SOX9), leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5), telomerase reverse transcriptase (TERT), and proliferation marker Ki-67 were examined in the flat-mounted corneas of three laboratory animals using immunofluorescence microscopy.

Results: On flat mounts, proximity to the trabecular meshwork correlated with weaker ARS staining and greater polymorphism of endothelial cells in the transition zone in all animals. On SEM, distinct and smooth structures of the transition zone were negligibly detected in all animals. The endothelial cells in the transition zone had irregular shapes, with less dense, less wavy intercellular junctions, especially in murine corneas, exhibiting unique intercellular cystic spaces. In the transition zone of the rabbit cornea, progenitor cell markers p75NTR, SOX9, Lgr5, TERT, and proliferation marker Ki-67 were expressed, in contrast to those in other murine corneas.

Conclusions: Although the transition zone was not identified clearly, irregular cell morphology and loss of cell-cell contact were observed in all animal corneal endothelial cells. The proliferative capacity and the presence of progenitor cells were confirmed in the transition zone, especially in the rabbit cornea.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Animals, Laboratory
  • Cornea
  • Endothelial Cells*
  • Endothelium, Corneal*
  • Mice
  • Rabbits
  • Rats
  • Trabecular Meshwork