Age-related changes in muscle coordination patterns of stepping responses to recover from loss of balance

Exp Gerontol. 2024 Jun 15:191:112424. doi: 10.1016/j.exger.2024.112424. Epub 2024 Apr 15.

Abstract

Introduction: Reactive stepping capacity to recover from a loss of balance declines with aging, which increases the risk of falling. To gain insight into the underlying mechanisms, we investigated whether muscle coordination patterns of reactive stepping differed between healthy young and older individuals.

Methods: We performed a cross-sectional study between 15 healthy young and 14 healthy older adults. They recovered from 200 multidirectional platform translations that evoked reactive stepping responses. We determined spatiotemporal step variables and used muscle synergy analysis to characterize stance- and swing-leg muscle coordination patterns from the start of perturbation until foot landing.

Results: We observed delayed step onsets in older individuals, without further spatiotemporal differences. Muscle synergy structure was not different between young and older individuals, but age-related differences were observed in the time-varying synergy activation patterns. In anterior-posterior directions, the older individuals demonstrated significantly enhanced early swing-leg synergy activation consistent with non-stepping behavior. In addition, around step onset they demonstrated increased levels of synergy coactivation (mainly around the ankle) in lateral and anterior directions, which did not appear to hamper foot clearance.

Conclusion: Although synergy structure was not affected by age, the delayed step onsets and the enhanced early synergy recruitment point at a relative bias towards non-stepping behavior in older adults. They may need more time for accumulating information on the direction of perturbation and making the corresponding sensorimotor transformations before initiating the step. Future work may investigate whether perturbation-based training improves these age-related deficits.

Keywords: Aging; Fall recovery; Muscle synergies; Reactive stepping.

MeSH terms

  • Accidental Falls / prevention & control
  • Adult
  • Aged
  • Aging* / physiology
  • Biomechanical Phenomena
  • Cross-Sectional Studies
  • Electromyography
  • Female
  • Humans
  • Male
  • Middle Aged
  • Muscle, Skeletal* / physiology
  • Postural Balance* / physiology
  • Walking / physiology
  • Young Adult