Virulence Genes, Antimicrobial Resistance, and Genotypes of Campylobacter jejuni Isolated from Chicken Slaughterhouses in South Korea

Foodborne Pathog Dis. 2024 Apr 12. doi: 10.1089/fpd.2023.0144. Online ahead of print.

Abstract

Campylobacter jejuni represents one of the leading causes of bacterial gastroenteritis in humans and is primarily linked to chicken meat contamination. In the present study, we analyzed the virulence and survival genes, antimicrobial resistance, and the clonal distribution of 50 C. jejuni isolates obtained from various sources in 14 chicken slaughterhouses across 8 provinces in South Korea from 2019 to 2022. Furthermore, we determined their genetic relatedness to human-derived isolates registered in PubMLST using multilocus sequence typing (MLST). All isolates harbored various virulence and survival genes (flhA, cadF, cdtA, cdtC, cmeA, and sodB) out of 17 tested genes, as confirmed via polymerase chain reaction analysis. Adherence factor gene virB11 was not detected in any isolate. All isolates harbored 12 or more virulence and survival genes. Antimicrobial susceptibility testing indicated that ciprofloxacin resistance was the most prevalent (84.0%), followed by nalidixic acid (82.0%) and tetracycline (52.0%) resistance. MLST analysis of the isolates revealed 18 sequence types (STs), including four new ones. Overlapping STs between chicken slaughterhouse and human-derived isolates included ST42, ST45, ST50, ST137, ST354, and ST464. Our study identified 11 clonal complexes (CCs), with CC-21 being the most prevalent in both human and chicken slaughterhouse-derived isolates. This study provides comprehensive insights into recent C. jejuni isolates from chicken slaughterhouses, including data on quinolone resistance and virulence factors. The MLST-based genetic relatedness between isolates from humans and chicken slaughterhouses in this study suggests the potential of C. jejuni transmission from chickens to humans through the food chain. This study suggests the need for improved management practices in chicken slaughterhouses to reduce the transmission of chicken slaughterhouse-derived C. jejuni to humans.

Keywords: Campylobacter jejuni; antimicrobial resistance; chicken slaughterhouse; multilocus sequence typing; virulence-associated genes.