Clinical use of macitentan in the treatment of connective tissue disease-associated pulmonary arterial hypertension

J Thorac Dis. 2024 Mar 29;16(3):2060-2069. doi: 10.21037/jtd-24-151. Epub 2024 Mar 27.

Abstract

Background: Connective tissue disease (CTD) is the second most common cause of the pulmonary arterial hypertension (PAH). Currently, clinical data concerning CTD-PAH is scarce. Our study aimed to assess the efficacy and safety of macitentan in the treatment of CTD-PAH.

Methods: In this retrospective study, patients diagnosed with CTD-PAH at The First Affiliated Hospital of Soochow University from April 2020 to November 2021 were included. Of the patients, 9 were switched to macitentan monotherapy whereas 23 received initial combination therapy. The mean follow-up time was 24 weeks. Six-minute walking distance (6MWD), World Health Organization functional class (WHO-FC), serum N-terminal pro-brain natriuretic peptide (NT-proBNP), and echocardiography parameters before and after medication were assessed. Adverse reactions were also recorded and compared.

Results: After 24 weeks of treatment, 6MWD, NT-proBNP, systolic pulmonary artery pressure (sPAP) estimated by ultrasound, tricuspid regurgitation pressure gradient (TRPG) and tricuspid annular plane systolic excursion (TAPSE) in the macitentan monotherapy group revealed significant differences (Z=-2.67, Z=-2.67, t=6.20, t=5.60, t=-3.04, P<0.05). There were no statistically significant differences in right ventricular diameter (RVD), right atrial diameter (RAD), ascending aortic root inner diameter (AAO) and left ventricular end-diastolic diameter (LVEDd) (P>0.05). After 24 weeks of medication, the number of patients with WHO-FC grade III/IV symptoms decreased from 6 to 3, 1 to 0 respectively (P<0.05), and that of patients with WHO-FC grade I/II symptoms increased from 0 to 2, 2 to 4 respectively(P<0.05). After 24 weeks of treatment, 6MWD, NT-proBNP, LVEDd, sPAP and TRPG in the macitentan combined with sildenafil treatment group revealed statistically significant differences (Z=-4.11, Z=-3.74, Z=-3.83, t=6.88, t=6.54, P<0.001). Significant differences in RVD, RAD, and TAPSE were found (t=3.46, t=3.69, t=-3.12, P<0.05). There were no statistically significant variances in AAO between the groups (P>0.05). The number of patients with WHO-FC grade III/IV symptoms decreased from 16 to 8, 5 to 0 respectively (P<0.05), and that of patients with WHO-FC grade I/II symptoms increased from 0 to 1, 2 to 14 respectively (P<0.001). There were no statistically significant differences before and after treatment in 6MWD, NT-proBNP, RVD, RAD, AAO, LVEDd, sPAP, TRPG and TAPSE between the two groups (P>0.05). There were no statistically significant differences in alanine aminotransferase (ALT), aspartate aminotransferase (AST), serum creatinine (Scr) and hemoglobin (Hb) between 0 and 24 weeks (P>0.05).

Conclusions: Exercise tolerance and cardiac function in patients with CTD-PAH were significantly improved after treatment with macitentan, which was well tolerated. Therefore, macitentan may be an effective and safe targeted drug for CTD-PAH.

Keywords: Connective tissue disease (CTD); echocardiography; macitentan; pulmonary arterial hypertension (PAH).