Phase Engineered Composite Phase Change Materials for Thermal Energy Manipulation

Small. 2024 Apr 15:e2312134. doi: 10.1002/smll.202312134. Online ahead of print.

Abstract

Phase change materials (PCMs) present a dual thermal management functionality through intrinsic thermal energy storage (TES) capabilities while maintaining a constant temperature. However, the practical application of PCMs encounters challenges, primarily stemming from their low thermal conductivity and shape-stability issues. Despite significant progress in the development of solid-solid PCMs, which offer superior shape-stability compared to their solid-liquid counterparts, they compromise TES capacity. Herein, a universal phase engineering strategy is introduced to address these challenges. The approach involves compositing solid-liquid PCM with a particulate-based conductive matrix followed by surface reaction to form a solid-solid PCM shell, resulting in a core-shell composite with enhanced thermal conductivity, high thermal storage capacity, and optimal shape-stability. The core-shell structure designed in this manner not only encapsulates the energy-rich solid-liquid PCM core but also significantly enhances TES capacity by up to 52% compared to solid-solid PCM counterparts. The phase-engineered high-performance PCMs exhibit excellent thermal management capabilities by reducing battery cell temperature by 15 °C and demonstrating durable solar-thermal-electric power generation under cloudy or no sunshine conditions. This proposed strategy holds promise for extending to other functional PCMs, offering a compelling avenue for the development of high-performance PCMs for thermal energy applications.

Keywords: high thermal storage capacity; optimal shape‐stability; phase change material; phase engineering; thermal manipulation.