Transcriptional rewiring of an evolutionarily conserved circadian clock

EMBO J. 2024 May;43(10):2015-2034. doi: 10.1038/s44318-024-00088-3. Epub 2024 Apr 16.

Abstract

Circadian clocks temporally coordinate daily organismal biology over the 24-h cycle. Their molecular design, preserved between fungi and animals, is based on a core-oscillator composed of a one-step transcriptional-translational-negative-feedback-loop (TTFL). To test whether this evolutionarily conserved TTFL architecture is the only plausible way for achieving a functional circadian clock, we adopted a transcriptional rewiring approach, artificially co-opting regulators of the circadian output pathways into the core-oscillator. Herein we describe one of these semi-synthetic clocks which maintains all basic circadian features but, notably, it also exhibits new attributes such as a "lights-on timer" logic, where clock phase is fixed at the end of the night. Our findings indicate that fundamental circadian properties such as period, phase and temperature compensation are differentially regulated by transcriptional and posttranslational aspects of the clockworks.

Keywords: Circadian Rhythms; Neurospora; Photoresponses; Synthetic Biology; Transcriptional Rewiring.

MeSH terms

  • Animals
  • Circadian Clocks* / genetics
  • Circadian Rhythm / genetics
  • Evolution, Molecular
  • Gene Expression Regulation
  • Transcription, Genetic*