Broadband Green Luminescence and Phase Transition in Low-Dimensional Organic-Inorganic Hybrid Iodate

Inorg Chem. 2024 Apr 29;63(17):7799-7805. doi: 10.1021/acs.inorgchem.4c00238. Epub 2024 Apr 16.

Abstract

Organic-inorganic hybrid iodide systems, which can form highly ordered chromophores and uniformly oriented transition dipole moments, serve as optimal host-guest systems for the fabrication of micrometer-scale optical devices. In particular, those with low-dimensional structures can exhibit strong quantum-limited and highly localized charges, enabling the generation of high exciton energies and stable excitation emission. In this study, we report a novel instance of an organic-inorganic hybrid iodate, (C13H11N2)(IO3), which was synthesized by incorporating the optically active organic compound, 9-aminoacridine. Upon crystallization in the monoclinic space group P21/c, this compound exhibits a direct optical band gap of 2.66 eV. The incorporation of discrete organic units within the low-dimensional structures induces pronounced local charges, culminating in broadband green luminescence with a peak at 540 nm under UV excitation. This corresponds to the CIE coordinates (0.37, 0.56). A potential phase transition was inferred through a comprehensive analysis of the variable temperature structure and emission spectra. Furthermore, first-principles calculations revealed the pivotal role of organic cations in facilitating broadband luminescence.