Size-Dependent Blue Emission from Europium-Doped Strontium Fluoride Nanoscintillators for X-Ray-Activated Photodynamic Therapy

Adv Healthc Mater. 2024 Apr 17:e2400372. doi: 10.1002/adhm.202400372. Online ahead of print.


Successful implementation of X-ray-activated photodynamic therapy (X-PDT) is challenging because most photosensitizers (PSs) absorb light in the blue region, but few nanoscintillators produce efficient blue scintillation. Here, efficient blue-emitting SrF2:Eu scintillating nanoparticles (ScNPs) are developed. The optimized synthesis conditions result in cubic nanoparticles with ≈32 nm diameter and blue emission at 416 nm. Coating them with the meso-tetra(n-methyl-4-pyridyl) porphyrin (TMPyP) in a core-shell structure (SrF@TMPyP) results in maximum singlet oxygen (1O2) generation upon X-ray irradiation for nanoparticles with 6TMPyP depositions (SrF@6TMPyP). The 1O2 generation is directly proportional to the dose, does not vary in the low-energy X-ray range (48-160 kVp), but is 21% higher when irradiated with low-energy X-rays than irradiations with higher energy gamma rays. In the clonogenic assay, cancer cells treated with SrF@6TMPyP and exposed to X-rays present a significantly reduced survival fraction compared to the controls. The SrF2:Eu ScNPs and their conjugates stand out as tunable nanoplatforms for X-PDT due to the efficient blue emission from the SrF2:Eu cores; the ability to adjust the scintillation emission in terms of color and intensity by controlling the nanoparticle size; the efficient 1O2 production when conjugated to a PS and the efficacy of killing cancer cells.

Keywords: cancer; lanthanides; nanomedicine; radioluminescence; radiotherapy.