Podocyte-Specific Silencing of Acid Sphingomyelinase Gene to Abrogate Hyperhomocysteinemia-Induced NLRP3 Inflammasome Activation and Glomerular Inflammation

Am J Physiol Renal Physiol. 2024 Apr 18. doi: 10.1152/ajprenal.00195.2023. Online ahead of print.

Abstract

Acid Sphingomyelinase has been reported to increase tissue ceramide and thereby mediate hHcy-induced glomerular NLRP3 inflammasome activation, inflammation, and sclerosis. In the present study, we tested whether somatic podocyte-specific silencing of Smpd1 gene attenuates hHcy-induced NLRP3 inflammasome activation and associated exosome release in podocytes and thereby suppresses glomerular inflammatory response and injury. In vivo, somatic podocyte-specific Smpd1 gene silencing almost blocked hHcy-induced glomerular NLRP3 inflammasome activation in Podocre mice compared to control littermates. By nanoparticle tracking analysis, floxed Smpd1 shRNA transfection was found to abrogate hHcy-induced elevation of urinary exosome excretion in Podocre mice. In addition, Smpd1 gene silencing in podocytes prevented hHcy-induced immune cell infiltration into glomeruli, proteinuria, and glomerular sclerosis in Podocre mice. In cell studies, we also confirmed that Smpd1 gene knockout or silencing prevented Hcy-induced elevation of exosome release in the primary cultures of podocyte isolated from Smpd1-/- mice or podocytes of Podocre mice transfected with floxed Smpd1 shRNA compared to WT/WT podocytes. Smpd1 gene overexpression amplified Hcy-induced exosome secretion from podocytes of Smpd1trg/Podocre mice, which was remarkably attenuated by transfection of floxed Smpd1 shRNA. Mechanistically, Hcy-induced elevation of exosome release from podocytes was blocked by ASM inhibitor, but not by NLRP3 inflammasome inhibitors. Super-resolution microscopy also showed that ASM inhibitor, but not NLRP3 inflammasome inhibitors, prevented the inhibition of lysosome-multivesicular body interaction by Hcy in podocytes. In conclusion, our findings suggest that ASM in podocytes plays a crucial role in the control of NLRP3 inflammasome activation and exosome release.

Keywords: NLRP3 inflammasome; acid sphingomyelinase; exosome; hyperhomocysteinemia; podocyte.