Adsorption and Sensing Mechanism of a n TiO2 Particle (n = 1-3)-Doped MoTe2 Monolayer to Faulty and Hazardous Gases in the Underground Cableway

ACS Omega. 2024 Apr 1;9(15):17002-17011. doi: 10.1021/acsomega.3c08469. eCollection 2024 Apr 16.

Abstract

With the rapid growth of the economy and industrial technology, vigoroso and stable power distribution networks have gradually been established worldwide. Among these networks, underground cables play a crucial role in the distribution process, determining the overall electrical stability of entire cities. Based on density functional theory, this paper first proposes a TiO2 particle-doped MoTe2 monolayer to detect and eliminate these faults and hazardous gases within the underground cableway. The band structure, total density of states, projected density of states, and differential charge density are analyzed. The results demonstrate that the presence of TiO2 particles significantly enhances the adsorption capacity of MoTe2, diminishes the electrical conductivity of the doping system, and heightens electron activity in the doping reaction zone. The best adsorption performance is achieved in the case of two-particle doping. Furthermore, the modified MoTe2 exhibits an enhanced capability for capturing SO2 and SOF2, with the adsorption mechanism classified as physical-chemical adsorption. This work not only introduces a novel surface modification method for a MoTe2 monolayer but also provides a substantial data set to support the design and production of efficient sensors used in the underground cableway. These contributions further enhance the safety and stability of power systems and ensure human health.