Chemoenzymatic access to enantiopure N-containing furfuryl alcohol from chitin-derived N-acetyl-D-glucosamine

Bioresour Bioprocess. 2021 Aug 27;8(1):80. doi: 10.1186/s40643-021-00435-w.

Abstract

Background: Chiral furfuryl alcohols are important precursors for the synthesis of valuable functionalized pyranones such as the rare sugar L-rednose. However, the synthesis of enantiopure chiral biobased furfuryl alcohols remains scarce. In this work, we present a chemoenzymatic route toward enantiopure nitrogen-containing (R)- and (S)-3-acetamido-5-(1-hydroxylethyl)furan (3A5HEF) from chitin-derived N-acetyl-D-glucosamine (NAG).

Findings: 3-Acetamido-5-acetylfuran (3A5AF) was obtained from NAG via ionic liquid/boric acid-catalyzed dehydration, in an isolated yield of approximately 31%. Carbonyl reductases from Streptomyces coelicolor (ScCR) and Bacillus sp. ECU0013 (YueD) were found to be good catalysts for asymmetric reduction of 3A5AF. Enantiocomplementary synthesis of (R)- and (S)-3A5HEF was implemented with the yields of up to > 99% and the enantiomeric excess (ee) values of > 99%. Besides, biocatalytic synthesis of (R)-3A5HEF was demonstrated on a preparative scale, with an isolated yield of 65%.

Conclusions: A two-step process toward the chiral furfuryl alcohol was successfully developed by integrating chemical catalysis with enzyme catalysis, with excellent enantioselectivities. This work demonstrates the power of the combination of chemo- and biocatalysis for selective valorization of biobased furans.

Keywords: Asymmetric synthesis; Biobased chemicals; Carbonyl reductases; Enzyme catalysis; Organonitrogen chemicals.