Short-Term Biological Toxicity Prediction of [177Lu]Lutetium-Oxodotreotide: An Original Retrospective Analysis

Cancer Biother Radiopharm. 2024 Apr 24. doi: 10.1089/cbr.2023.0195. Online ahead of print.


Introduction: [177Lu]Lutetium (Lu)-oxodotreotide is a radiopharmaceutical drug used as peptide receptor radionuclide therapy (PRRT) for somatostatin receptor-expressing neuroendocrine neoplasms. It provides an additional effective alternative treatment for these rare cancers. Although well tolerated, its safety profile must continue to be characterized to support its use as a first-line treatment or for additional cycles. This study aims to evaluate factors associated with the occurrence of [177Lu]Lu-oxodotreotide induced short-term toxicity. Materials and Methods: A retrospective observational monocentric study was carried out from July 2013 to October 2021. Inclusion criteria were defined as follows: patients who received at least four cycles of [177Lu]Lu-oxodotreotide and were followed up for 6 months after the last injection. Graduated toxicity was defined using the National Cancer Institute Common Terminology Criteria for Adverse Events 5.0. Cox regression was used in the analysis. Results: Forty patients were included. The most frequent toxicities occurred during the first cycle and were graded as G1 or G2. As expected, toxicities were predominantly hematological and hepatic, with incomplete reversibility after each cycle. The following factors were significantly related to the occurrence of hematological or hepatic toxicity during PRRT: gastrointestinal primary tumor diagnosis, bone metastases, peritoneal metastases, pancreatic metastases or pulmonary metastases, and high tumor grade. Conclusion: Knowledge and consideration of these factors in adjusting [177Lu]Lu-oxodotreotide treatment regimen could help prevent or reduce the severity of these toxicities. Further studies are still warranted to refine these results and improve treatment management.

Keywords: [177Lu]Lu-oxodotreotide; peptide receptor radionuclide therapy; radiopharmaceutical; toxicity prediction.