Controlling CAR T Cell Activity and Specificity with Synthetic SparX Adapters

Mol Ther. 2024 Apr 23:S1525-0016(24)00250-8. doi: 10.1016/j.ymthe.2024.04.027. Online ahead of print.

Abstract

While conventional CAR-T therapies have shown remarkable clinical activity in some settings, they can induce severe toxicities and are rarely curative. To address these challenges, we developed a controllable cell therapy where synthetic D-Domain-containing proteins (SparX) bind one or more tumor antigens and mark those cells for elimination by genetically modified T cells (ARC-T). The chimeric antigen receptor was engineered with a D-Domain that specifically binds to the SparX protein via a unique TAG, derived from human alpha-fetoprotein. The interaction is mediated through an epitope on the TAG that is occluded in the native alpha-fetoprotein molecule. In vitro and in vivo data demonstrate that the activation and cytolytic activity of ARC-T cells is dependent on the dose of SparX protein and only occurs when ARC-T cells are engaged SparX proteins bound to antigen-positive cells. ARC-T cell specificity was also redirected in vivo by changing SparX proteins that recognized different tumor antigens to combat inherent or acquired tumor heterogeneity. The ARC-SparX platform is designed to expand patient and physician access to cell therapy by controlling potential toxicities through SparX dosing regimens and enhancing tumor elimination through sequential or simultaneous administration of SparX proteins engineered to bind different tumor antigens.