Investigating the regional ecological environment stability and its feedback effect on interference using a novel vegetation resilience assessment model

Sci Total Environ. 2024 Apr 24:930:172728. doi: 10.1016/j.scitotenv.2024.172728. Online ahead of print.

Abstract

Vegetation resilience is critical for understanding the dynamic feedback effect of regional ecological environment stability against interferences. Thus, based on quantify the interferences of climate dryness and vegetation water deficit affecting vegetation growth function, incorporate mechanical Hooke's law to develop a vegetation resilience assessment model by quantitatively expressing vegetation growth function maintenance ability, to reveal the ecological environment stability and its feedback effect on interferences in the study area. The essential discoveries of the study are as follows: (1) with the increase of precipitation and the improvement of afforestation on soil erosion, the interferences intensity of climate dryness and vegetation water deficit in the ecological environment decreased by 5.88 % and 4.92 % respectively, the regional vegetation growth function loss was improved, especially in the southern region; (2) the decrease of vegetation growth function loss promoted the vegetation resilience level fluctuated from class II to class IV, with the average annual vegetation resilience increased by 7.02 %, reflecting that the regional ecological environment stability increased from difficult to rapid recovery after disturbance, and the benefit was especially noticeable in the eastern and southern forested areas; (3) the contribution rates of climate dryness and vegetation water deficit to the variation of vegetation resilience caused by vegetation restoration were -1.38 % and 4.73 %, respectively, and the prominent positive feedback effect of increasing vegetation resilience with decreasing vegetation water deficit degree in forest restoration area, indicating that the vegetation water deficit greatly impacts ecological environment stability in the study area, and forest restoration constantly improves regional ecological environment stability more than grassland restoration. This research has crucial guiding implications for supporting the sustainable development of regional ecological environments.

Keywords: Climate dryness; Ecological environment stability; Hooke's law; Vegetation resilience; Vegetation water deficit.