Candida tropicalis Affects Candida albicans Virulence by Limiting Its Capacity to Adhere to the Host Intestinal Surface, Leading to Decreased Susceptibility to Colitis in Mice

J Fungi (Basel). 2024 Mar 25;10(4):245. doi: 10.3390/jof10040245.

Abstract

Candida (C.) infections represent a serious health risk for people affected by inflammatory bowel disease. An important fungal virulence factor is the capacity of the fungus to form biofilms on the colonized surface of the host. This research study aimed to determine the effect of a C. tropicalis and C. albicans co-infection on dextran sodium sulfate (DSS)-induced colitis in mice. The colitis severity was evaluated using histology and a colonoscopy. The mice were mono-inoculated with C. albicans or C. tropicalis or co-challenged with both species. The mice were administered 3% DSS to induce acute colitis. The biofilm activity was assessed using (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl] 2H-tetrazoliumhydroxide (XTT) and dry-weight assays. The abundance of C. albicans in the colon tissues was assessed by immunohistochemistry. The co-challenged mice showed a decreased colitis severity compared to the mono-inoculated mice. The dry-weight assay demonstrated a marked decrease in C. albicans biofilm production in a C. albicans culture incubated with C. tropicalis supernatant. Immunohistochemical staining showed that C. albicans was more abundant in the mucosa of C. albicans mono-inoculated mice compared to the co-inoculated group. These data indicate an antagonistic microbial interaction between the two Candida species, where C. tropicalis may produce molecules capable of limiting the ability of C. albicans to adhere to the host intestinal surface, leading to a reduction in biofilm formation.

Keywords: C. albicans; C. tropicalis; biofilm; colitis; mycobiome.