Pharmacological Mechanism of Mume Fructus in the Treatment of Triple-Negative Breast Cancer Based on Network Pharmacology

Appl Biochem Biotechnol. 2024 Apr 26. doi: 10.1007/s12010-024-04948-w. Online ahead of print.

Abstract

Our study aims to find the relevant mechanism of Mume Fructus in the treatment of triple-negative breast cancer (TNBC) by network pharmacology analysis and experimental validation. The effective compounds of Mume Fructus and TNBC-related target genes were imported into Cytoscape to construct a Mume Fructus-effective compounds-disease target network. The common targets of Mume Fructus and TNBC were determined by drawing Venn diagrams. Then, the intersection targets were transferred to the STRING database to construct a protein-protein interaction (PPI) network. To investigate the mechanism of Mume Fructus in the treatment of TNBC, breast cancer cell (BCAP-37) was treated with Mume Fructus and/or transfected with small interference RNA-PKM2(siPKM2). CCK-8 assay, cell clonal formation assay, transwell, flow cytometry, qRT-PCR, and western blotting were performed. Eight effective compounds and 145 target genes were obtained, and the Mume Fructus- effective compounds-disease target network was constructed. Then through the analysis of the PPI network, we obtained 10 hub genes including JUN, MAPK1, RELA, AKT1, FOS, ESR1, IL6, MAPK8, RXRA, and MYC. KEGG enrichment analysis showed that JUN, MAPK1, RELA, FOS, ESR1, IL6, MAPK8, and RXRA were enriched in the Th17 cell differentiation signaling pathway. Loss of PKM2 and Mume Fructus both inhibited the malignant phenotype of BCAP-37 cells. And siPKM2 further aggravated the Mume Fructus inhibition of malignancy of breast cancer cells. Network pharmacology analysis suggests that Mume Fructus has multiple therapeutic targets for TNBC and may play a therapeutic role by modulating the immune microenvironment of breast cancer.

Keywords: Apoptosis; Gene; Mume Fructus; Network pharmacology; Proliferation; Triple-negative breast cancer.