Gap Junctions in Ctenophora

Methods Mol Biol. 2024:2757:361-381. doi: 10.1007/978-1-0716-3642-8_16.

Abstract

Gap junction proteins form specialized intercellular communication channels, including electrical synapses, that regulate cellular metabolism and signaling. We present a molecular inventory of the gap junction proteins-innexins (INX-like) in ctenophores, focusing on two reference species, Pleurobrachia bachei and Mnemiopsis leidyi. Innexins were identified in more than 15 ctenophore species, including such genera as Euplokamis, Pukia, Hormiphora, Bolinopsis, Cestum, Ocyropsis, Dryodora, Beroe, benthic ctenophores, Coeloplana and Vallicula, and undescribed species of Mertensiidae. The observed diversity of innexins resulted from the independent expansion of this family from the common ancestor of ctenophores. Innexins show the conserved topology with four transmembrane domains connected by two extracellular loops, which bridge intracellular gaps. However, INX-like genes have highly diverse exon organization and low percentage identity for their amino acid sequences within the same species and between ctenophore species. Such a broad scope of molecular diversity differs from innexins in other phyla. We predicted posttranslational modifications in innexins: 249 and 188 for M. leidyi and P. bachei, respectively. Neither their number nor their locations were conserved within or between species. When the number of posttranslational modifications is factored into the innexins' radiation, the potential for molecular and physiological diversity within gap junctions of ctenophores is almost unfathomable. RNA-seq and in situ hybridization data revealed that innexins are expressed across embryogenesis, including early cleavage stages and gastrulation. They are abundant in all adult tissues, with the highest expression level in the aboral organ (the major integrative center and the gravity sensor in ctenophores), followed by tentacles and comb plates. Nevertheless, each organ and tissue has a unique combination of innexins, suggesting their involvement in complex integrative functions and behaviors of ctenophores.

Keywords: Evolution; Innexin; Mnemiopsis; Pannexin; Phylogeny; Pleurobrachia; Posttranslational modifications; Ctenophora.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Ctenophora* / genetics
  • Gap Junctions* / genetics
  • Gap Junctions* / metabolism
  • Phylogeny