Inherent Bias in Electronic Health Records: A Scoping Review of Sources of Bias

medRxiv [Preprint]. 2024 Apr 12:2024.04.09.24305594. doi: 10.1101/2024.04.09.24305594.

Abstract

Objectives: 1.1Biases inherent in electronic health records (EHRs), and therefore in medical artificial intelligence (AI) models may significantly exacerbate health inequities and challenge the adoption of ethical and responsible AI in healthcare. Biases arise from multiple sources, some of which are not as documented in the literature. Biases are encoded in how the data has been collected and labeled, by implicit and unconscious biases of clinicians, or by the tools used for data processing. These biases and their encoding in healthcare records undermine the reliability of such data and bias clinical judgments and medical outcomes. Moreover, when healthcare records are used to build data-driven solutions, the biases are further exacerbated, resulting in systems that perpetuate biases and induce healthcare disparities. This literature scoping review aims to categorize the main sources of biases inherent in EHRs.

Methods: 1.2We queried PubMed and Web of Science on January 19th, 2023, for peer-reviewed sources in English, published between 2016 and 2023, using the PRISMA approach to stepwise scoping of the literature. To select the papers that empirically analyze bias in EHR, from the initial yield of 430 papers, 27 duplicates were removed, and 403 studies were screened for eligibility. 196 articles were removed after the title and abstract screening, and 96 articles were excluded after the full-text review resulting in a final selection of 116 articles.

Results: 1.3Systematic categorizations of diverse sources of bias are scarce in the literature, while the effects of separate studies are often convoluted and methodologically contestable. Our categorization of published empirical evidence identified the six main sources of bias: a) bias arising from past clinical trials; b) data-related biases arising from missing, incomplete information or poor labeling of data; human-related bias induced by c) implicit clinician bias, d) referral and admission bias; e) diagnosis or risk disparities bias and finally, (f) biases in machinery and algorithms.

Conclusions: 1.4Machine learning and data-driven solutions can potentially transform healthcare delivery, but not without limitations. The core inputs in the systems (data and human factors) currently contain several sources of bias that are poorly documented and analyzed for remedies. The current evidence heavily focuses on data-related biases, while other sources are less often analyzed or anecdotal. However, these different sources of biases add to one another exponentially. Therefore, to understand the issues holistically we need to explore these diverse sources of bias. While racial biases in EHR have been often documented, other sources of biases have been less frequently investigated and documented (e.g. gender-related biases, sexual orientation discrimination, socially induced biases, and implicit, often unconscious, human-related cognitive biases). Moreover, some existing studies lack causal evidence, illustrating the different prevalences of disease across groups, which does not per se prove the causality. Our review shows that data-, human- and machine biases are prevalent in healthcare and they significantly impact healthcare outcomes and judgments and exacerbate disparities and differential treatment. Understanding how diverse biases affect AI systems and recommendations is critical. We suggest that researchers and medical personnel should develop safeguards and adopt data-driven solutions with a "bias-in-mind" approach. More empirical evidence is needed to tease out the effects of different sources of bias on health outcomes.

Keywords: AI Bias; Clinical Trial; Electronic Health Records (EHRs); Human Bias; Implicit bias; Machine Learning (ML); Medical Machinery.

Publication types

  • Preprint

Grants and funding

LAC is funded by the National Institute of Health through NIBIB R01 EB017205.