Development and Application of a Novel Machine Learning Model Predicting Pancreatic Cancer-Specific Mortality

Cureus. 2024 Mar 29;16(3):e57161. doi: 10.7759/cureus.57161. eCollection 2024 Mar.

Abstract

Precise prognostication is vital for guiding treatment decisions in people diagnosed with pancreatic cancer. Existing models depend on predetermined variables, constraining their effectiveness. Our objective was to explore a novel machine learning approach to enhance a prognostic model for predicting pancreatic cancer-specific mortality and, subsequently, to assess its performance against Cox regression models. Datasets were retrospectively collected and analyzed for 9,752 patients diagnosed with pancreatic cancer and with surgery performed. The primary outcomes were the mortality of patients with pancreatic carcinoma at one year, three years, and five years. Model discrimination was assessed using the concordance index (C-index), and calibration was assessed using Brier scores. The Survival Quilts model was compared with Cox regression models in clinical use, and decision curve analysis was done. The Survival Quilts model demonstrated robust discrimination for one-year (C-index 0.729), three-year (C-index 0.693), and five-year (C-index 0.672) pancreatic cancer-specific mortality. In comparison to Cox models, the Survival Quilts models exhibited a higher C-index up to 32 months but displayed inferior performance after 33 months. A subgroup analysis was conducted, revealing that within the subset of individuals without metastasis, the Survival Quilts models showcased a significant advantage over the Cox models. In the cohort with metastatic pancreatic cancer, Survival Quilts outperformed the Cox model before 24 months but exhibited a weaker performance after 25 months. This study has developed and validated a novel machine learning-based Survival Quilts model to predict pancreatic cancer-specific mortality that outperforms the Cox regression model.

Keywords: machine learning; pancreatic ductal adenocarcinoma; predictive model; seer database; survival quilts.