EIF3B stabilizes PCNA by counteracting SYVN1-mediated ubiquitination to serve as a promotor in cholangiocarcinoma

Aging (Albany NY). 2024 Apr 29;16(8):7311-7330. doi: 10.18632/aging.205759. Epub 2024 Apr 29.

Abstract

Cholangiocarcinoma, a prevalent hepatic malignancy, exhibits a progressively rising incidence. While Eukaryotic translation initiation factor 3 subunit B (EIF3B) has been implicated in the occurrence and development of various cancers, its specific roles in cholangiocarcinoma remain unexplored. Immunohistochemical (IHC) analysis was employed to detect EIF3B/PCNA expression in cholangiocarcinoma. Cells were manipulated using short hairpin RNA (shRNA)-mediated lentiviruses or overexpression plasmids. Statistical significance was assessed using the Student's t-test and one-way ANOVA, with P < 0.05 considered statistically significant. EIF3B exhibited robust expression in cholangiocarcinoma, demonstrating a significant correlation with the pathological grade of cholangiocarcinoma patients. Furthermore, modulation of EIF3B expression, either depletion or elevation, demonstrated the ability to inhibit or enhance cholangiocarcinoma cell survival and migration in vitro. Mechanistically, we identified Proliferating Cell Nuclear Antigen (PCNA) as a downstream gene of EIF3B, driving cholangiocarcinoma. EIF3B stabilized PCNA by inhibiting PCNA ubiquitination, a process mediated by E3 ligase SYVN1. Similar to EIF3B, PCNA levels were also abundant in cholangiocarcinoma, and knocking down PCNA impeded cholangiocarcinoma development. Intriguingly, silencing PCNA attenuated the promotion induced by EIF3B overexpression. Furthermore, the elevated P21 protein level in shEIF3B RBE cells was partially attenuated after UC2288 (P21 signaling pathway inhibitor) treatment. Our findings underscored the potential of EIF3B as a therapeutic target for cholangiocarcinoma. Unraveling its functions holds promise for the development of more specific and effective targeted therapy strategies.

Keywords: EIF3B; P21; PCNA; cholangiocarcinoma.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Bile Duct Neoplasms* / genetics
  • Bile Duct Neoplasms* / metabolism
  • Bile Duct Neoplasms* / pathology
  • Cell Line, Tumor
  • Cell Movement / genetics
  • Cell Proliferation
  • Cholangiocarcinoma* / genetics
  • Cholangiocarcinoma* / metabolism
  • Cholangiocarcinoma* / pathology
  • Eukaryotic Initiation Factor-3* / genetics
  • Eukaryotic Initiation Factor-3* / metabolism
  • Female
  • Gene Expression Regulation, Neoplastic
  • Humans
  • Male
  • Proliferating Cell Nuclear Antigen* / genetics
  • Proliferating Cell Nuclear Antigen* / metabolism
  • Ubiquitin-Protein Ligases* / genetics
  • Ubiquitin-Protein Ligases* / metabolism
  • Ubiquitination*

Substances

  • Proliferating Cell Nuclear Antigen
  • Eukaryotic Initiation Factor-3
  • Ubiquitin-Protein Ligases
  • EIF3B protein, human
  • PCNA protein, human