3D-Printing of Hierarchical Porous Copper-Based Metal-Organic-Framework Structures for Efficient Fixed-Bed Catalysts

Chem Bio Eng. 2024 Feb 26;1(3):264-273. doi: 10.1021/cbe.4c00001. eCollection 2024 Apr 25.

Abstract

Metallic structures with hierarchical open pores that span several orders of magnitude are ideal candidates for various catalyst applications. However, porous metal materials prepared using alloy/dealloy methods still struggle to achieve continuous pore distribution across a broad size range. Herein, we report a printable copper (Cu)/iron (Fe) composite ink that produces a hierarchical porous Cu material with pores spanning over 4 orders of magnitude. The manufacturing process involves four steps: 3D-printing, annealing, dealloying, and reannealing. Because of the unique annealing process, the resulting hierarchical pore surface becomes coated with a layer of Cu-Fe alloy. This feature imparts remarkable catalytic ability and versatile functionality within fixed bed reactors for 4-nitrophenol (4-NP) reduction and Friedländer cyclization. Specifically, for 4-NP reduction, the porous Cu catalyst demonstrates an excellent reaction rate constant (kapp = 86.5 × 10-3 s-1) and a wide adaptability of the substrate (up to 1.26 mM), whilst for Friedländer cyclization, a conversion over 95% within a retention time of only 20 min can be achieved by metal-organic-framework-decorated porous Cu catalyst. The utilization of dual metallic particles as printable inks offers valuable insights for fabricating hierarchical porous metallic structures for applications, such as advanced fixed-bed catalysts.