Retinoic acid modulation of granule cell activity and spatial discrimination in the adult hippocampus

Front Cell Neurosci. 2024 Apr 17:18:1379438. doi: 10.3389/fncel.2024.1379438. eCollection 2024.

Abstract

Retinoic acid (RA), derived from vitamin A (retinol), plays a crucial role in modulating neuroplasticity within the adult brain. Perturbations in RA signaling have been associated with memory impairments, underscoring the necessity to elucidate RA's influence on neuronal activity, particularly within the hippocampus. In this study, we investigated the cell type and sub-regional distribution of RA-responsive granule cells (GCs) in the mouse hippocampus and delineated their properties. We discovered that RA-responsive GCs tend to exhibit a muted response to environmental novelty, typically remaining inactive. Interestingly, chronic dietary depletion of RA leads to an abnormal increase in GC activation evoked by a novel environment, an effect that is replicated by the localized application of an RA receptor beta (RARβ) antagonist. Furthermore, our study shows that prolonged RA deficiency impairs spatial discrimination-a cognitive function reliant on the hippocampus-with such impairments being reversible with RA replenishment. In summary, our findings significantly contribute to a better understanding of RA's role in regulating adult hippocampal neuroplasticity and cognitive functions.

Keywords: dentate gyrus; granule cells; hippocampal neuroplasticity; retinoic acid; spatial discrimination; vitamin A.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2021R1A2C1009454); KBRI basic research program through Korea Brain Research Institute funded by Ministry of Science and ICT (24-BR-03-03, 24-BR-02-03); National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A03040516).