Scutellarein alleviates osteoarthritis progression through the PI3K/Akt/NF-kappaB signaling pathway: In vitro and in vivo studies

Phytother Res. 2024 May 2. doi: 10.1002/ptr.8232. Online ahead of print.

Abstract

Osteoarthritis (OA), a joint disease that is associated with inflammatory processes is involved in joint destruction. Scutellarein (Scu), a component of the medicinal herbs Scutellaria barbata D. Don and Erigeron breviscapus (vant) Hand Mass, has anti-inflammatory effects. We explored the role of Scu in the development of OA and the underlying mechanisms. CCK-8 assays, Calcein-AM/PI and EdU staining were used to determine chondrocyte viability after Scu exposure. Western blot, qPCR, as well as ELISA were utilized to measure extracellular matrix (ECM) degradation and inflammation. Immunofluorescence (IF), western blot and luciferase assays were used to examine the NF-kappaB (NF-κB) pathway. Scu interacting proteins were predicted using network pharmacology analysis and molecular docking. X-ray, H&E, Safranin O-Fast Green(S-O), toluidine blue, and immunohistochemistry analysis were used to examine the therapeutic effects of Scu in OA using destabilization of medial meniscus (DMM) models. Scu demonstrated inhibitory effects on ECM degradation and pro-inflammatory factor levels in chondrocytes treated with IL-1β. Mechanistically, Scu inhibited the IL-1β-induced activation of the PI3K/Akt/ NF-κB signaling pathway cascades. Furthermore, Scu has been shown to have significant binding capacities to PI3K. Additionally, Scu ameliorated the OA progression in DMM models. Our findings suggest that Scu may contribute to the amelioration of OA progression by targeting the PI3K/Akt/NF-κB signaling pathway, implying Scu possesses promising therapeutic potential for the treatment of OA.

Keywords: NF‐κB; PI3K/Akt; Scutellarein; inflammation; osteoarthritis.