Von Hippel-Lindau protein signalling in clear cell renal cell carcinoma

Nat Rev Urol. 2024 Nov;21(11):662-675. doi: 10.1038/s41585-024-00876-w. Epub 2024 May 2.

Abstract

The distinct pathological and molecular features of kidney cancer in adaptation to oxygen homeostasis render this malignancy an attractive model for investigating hypoxia signalling and potentially developing potent targeted therapies. Hypoxia signalling has a pivotal role in kidney cancer, particularly within the most prevalent subtype, known as renal cell carcinoma (RCC). Hypoxia promotes various crucial pathological processes, such as hypoxia-inducible factor (HIF) activation, angiogenesis, proliferation, metabolic reprogramming and drug resistance, all of which contribute to kidney cancer development, growth or metastasis formation. A substantial portion of kidney cancers, in particular clear cell RCC (ccRCC), are characterized by a loss of function of Von Hippel-Lindau tumour suppressor (VHL), leading to the accumulation of HIF proteins, especially HIF2α, a crucial driver of ccRCC. Thus, therapeutic strategies targeting pVHL-HIF signalling have been explored in ccRCC, culminating in the successful development of HIF2α-specific antagonists such as belzutifan (PT2977), an FDA-approved drug to treat VHL-associated diseases including advanced-stage ccRCC. An increased understanding of hypoxia signalling in kidney cancer came from the discovery of novel VHL protein (pVHL) targets, and mechanisms of synthetic lethality with VHL mutations. These breakthroughs can pave the way for the development of innovative and potent combination therapies in kidney cancer.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Basic Helix-Loop-Helix Transcription Factors / metabolism
  • Carcinoma, Renal Cell* / genetics
  • Carcinoma, Renal Cell* / metabolism
  • Carcinoma, Renal Cell* / pathology
  • Humans
  • Kidney Neoplasms* / metabolism
  • Kidney Neoplasms* / pathology
  • Signal Transduction*
  • Von Hippel-Lindau Tumor Suppressor Protein* / genetics
  • Von Hippel-Lindau Tumor Suppressor Protein* / metabolism

Substances

  • Von Hippel-Lindau Tumor Suppressor Protein
  • VHL protein, human
  • endothelial PAS domain-containing protein 1
  • Basic Helix-Loop-Helix Transcription Factors