Carbon monoxide (CO) is produced via incomplete combustion of fossil fuels and it may cause long-term neurological sequel upon exposure. Hesperidin (HES), a flavanone glycoside found in citrus plants, exerts diverse beneficial health effects. The present study mechanistically examined the neuroprotective effects of HES in CO-poisoned rats. Thirty male Wistar rats (five groups of six animals) were exposed to 3000 ppm CO for 1 h. Immediately after the exposure and on the next 4 consecutive days (totally five doses), rats intraperitoneally received either normal saline (the control group) or different doses of HES (25, 50, and 100 mg/kg). A sham group that was not exposed to CO was also considered. After evaluation of spatial learning and memory using a Morris water maze (MWM), animals were sacrificed and oxidative stress status in blood samples, and Akt, Bax, Bcl2, and brain-derived neurotrophic factor (BDNF) expression in brain samples were assessed. Western blot analysis indicated increased Akt but decreased Bax/Bcl2 levels in the HES 100 mg/kg, and induced BDNF levels in all HES-treated groups. MWM results showed that HES significantly decreased memory loss. The current findings indicate that HES could alleviate neurological impairments induced by CO in rats.
Keywords: Brain-derived neurotrophic factor; Carbon monoxide; Herbal; Hesperidin; Natural products; Neurotoxic; Phytochemical.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.