Enhanced adsorption of Bismark Brown R dye by chitosan conjugated magnetic pectin loaded filter mud: A comprehensive study on modeling and mechanisms

Int J Biol Macromol. 2024 May 3;270(Pt 1):131987. doi: 10.1016/j.ijbiomac.2024.131987. Online ahead of print.

Abstract

Herein, a polymer-based bioadsorbent was prepared by cross-linking chitosan to filter mud and magnetic pectin (Ch-mPC@FM) for the removal of Bismark Brown R dye (BB-R) from wastewater. Morphological characterization analysis indicated that Ch-mPC@FM had a higher surface area and better pore structure than its components. The Artificial Neuron Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were employed to evaluate the simulation and prediction of the adsorption process based on input variables like temperature, pH, dosage, initial BB-R dye concentration, and contact time. ANFIS and ANN demonstrated significant modeling and predictive accuracy, with R2 > 0.93 and R2 > 0.96, and root mean square error < 0.023 and <0.020, respectively. The Langmuir isotherm and the pseudo-second-order kinetic models provided the best fits to the equilibrium and kinetic data. The thermodynamic assessment showed spontaneous and endothermic adsorption with average entropy and enthalpy changes of 119.32 kJ mol-1 K and 403.47 kJ mol-1, respectively. The study of BB-R dye adsorption on Ch-mPC@FM revealed multiple mechanisms, including electrostatic, complexation, pore filling, cation-π interaction, hydrogen bonding, and π-π interactions. The approximate production cost of US$ 5.809 Kg-1 and excellent adsorption capability render Ch-mPC@FM an inexpensive, pragmatic, and ecologically safe bioadsorbent for BB-R dye removal from wastewater.

Keywords: Adsorption; Artificial intelligence; Biomolecules; Bismark Brown R dye; Chitosan; Filter mud; Magnetic pectin.