Targeting gut microbiota for immunotherapy of diseases

Arch Toxicol. 2024 May 9. doi: 10.1007/s00204-024-03770-x. Online ahead of print.

Abstract

With advances in next-generation sequencing technology, there is growing evidence that the gut microbiome plays a key role in the host's innate and adaptive immune system. Gut microbes and their metabolites directly or indirectly regulate host immune cells. Crucially, dysregulation of the gut microbiota is often associated with many immune system diseases. In turn, microbes modulate disease immunotherapy. Data from preclinical to clinical studies suggest that the gut microbiota may influence the effectiveness of tumor immunotherapy, particularly immune checkpoint inhibitors (ICIs). In addition, the most critical issue now is a COVID-19 vaccine that generates strong and durable immunity. A growing number of clinical studies confirm the potential of gut microbes to enhance the efficacy of COVID-19 vaccines. However, it is still unclear how gut bacteria interact with immune cells and what treatments are based on gut microbes. Here, we outline recent advances in the effects and mechanisms of the gut microbiota and its metabolites (tryptophan metabolites, bile acids, short-chain fatty acids, and inosine) on different immune cells (dendritic cells, CD4+T cells, and macrophages). It also highlights innovative intervention strategies and clinical trials of microbiota-based checkpoint blocking therapies for tumor immunity, and ongoing efforts to maintain the long-term immunogenicity of COVID-19 vaccines. Finally, the challenges to be overcome in this area are discussed. These provide an important basis for further research and clinical translation of gut microbiota.

Keywords: COVID-19; Gut microbiota; Immune cells; Immunotherapy; Metabolites; Tumor.

Publication types

  • Review