Whole-body magnetic resonance imaging at 0.05 Tesla
- PMID: 38723062
- DOI: 10.1126/science.adm7168
Whole-body magnetic resonance imaging at 0.05 Tesla
Abstract
Despite a half-century of advancements, global magnetic resonance imaging (MRI) accessibility remains limited and uneven, hindering its full potential in health care. Initially, MRI development focused on low fields around 0.05 Tesla, but progress halted after the introduction of the 1.5 Tesla whole-body superconducting scanner in 1983. Using a permanent 0.05 Tesla magnet and deep learning for electromagnetic interference elimination, we developed a whole-body scanner that operates using a standard wall power outlet and without radiofrequency and magnetic shielding. We demonstrated its wide-ranging applicability for imaging various anatomical structures. Furthermore, we developed three-dimensional deep learning reconstruction to boost image quality by harnessing extensive high-field MRI data. These advances pave the way for affordable deep learning-powered ultra-low-field MRI scanners, addressing unmet clinical needs in diverse health care settings worldwide.
Comment in
-
Imaging without barriers.Science. 2024 May 10;384(6696):623-624. doi: 10.1126/science.adp0670. Epub 2024 May 9. Science. 2024. PMID: 38723100
-
Beyond the AJR: Unlocking the Future-Whole Body Ultra-Low-Field MRI as a Pathway to Broad Access.AJR Am J Roentgenol. 2024 Jul 24. doi: 10.2214/AJR.24.31773. Online ahead of print. AJR Am J Roentgenol. 2024. PMID: 39046142 No abstract available.
Similar articles
-
A low-cost and shielding-free ultra-low-field brain MRI scanner.Nat Commun. 2021 Dec 14;12(1):7238. doi: 10.1038/s41467-021-27317-1. Nat Commun. 2021. PMID: 34907181 Free PMC article.
-
Electromagnetic interference elimination via active sensing and deep learning prediction for radiofrequency shielding-free MRI.NMR Biomed. 2024 Jul;37(7):e4956. doi: 10.1002/nbm.4956. Epub 2023 May 28. NMR Biomed. 2024. PMID: 37088894
-
Robust EMI elimination for RF shielding-free MRI through deep learning direct MR signal prediction.Magn Reson Med. 2024 Jul;92(1):112-127. doi: 10.1002/mrm.30046. Epub 2024 Feb 20. Magn Reson Med. 2024. PMID: 38376455
-
MRI at 7 Tesla and above: demonstrated and potential capabilities.J Magn Reson Imaging. 2015 Jan;41(1):13-33. doi: 10.1002/jmri.24573. Epub 2014 Jan 30. J Magn Reson Imaging. 2015. PMID: 24478137 Review.
-
Whole-body magnetic resonance angiography at 3.0 Tesla.Eur Radiol. 2008 Jul;18(7):1473-83. doi: 10.1007/s00330-008-0885-1. Epub 2008 Feb 15. Eur Radiol. 2008. PMID: 18274753 Review.
Cited by
-
The future of transcranial ultrasound as a precision brain interface.PLoS Biol. 2024 Oct 29;22(10):e3002884. doi: 10.1371/journal.pbio.3002884. eCollection 2024 Oct. PLoS Biol. 2024. PMID: 39471185 Free PMC article.
-
Reinventing magnetic resonance imaging for accessible healthcare: Whole-body imaging at 0.05 Tesla.Clin Transl Med. 2024 Oct;14(10):e70071. doi: 10.1002/ctm2.70071. Clin Transl Med. 2024. PMID: 39439413 Free PMC article. No abstract available.
-
Whole-Body Human Ultrasound Tomography.Res Sq [Preprint]. 2024 Jul 17:rs.3.rs-4714949. doi: 10.21203/rs.3.rs-4714949/v1. Res Sq. 2024. PMID: 39070654 Free PMC article. Preprint.
-
Fast, high-quality, and unshielded 0.2 T low-field mobile MRI using minimal hardware resources.MAGMA. 2024 Jul 5. doi: 10.1007/s10334-024-01184-5. Online ahead of print. MAGMA. 2024. PMID: 38967865
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
