Accuracy of antenatal ultrasound in predicting large-for-gestational-age babies: population-based cohort study

Am J Obstet Gynecol. 2024 May 7:S0002-9378(24)00578-7. doi: 10.1016/j.ajog.2024.04.052. Online ahead of print.

Abstract

Background: Pregnancies with large-for-gestational-age fetuses are at increased risk of adverse maternal and neonatal outcomes. There is uncertainty about how to manage birth in such pregnancies. Current guidelines recommend a discussion with women of the pros and cons of options, including expectant management, induction of labor, and cesarean delivery. For women to make an informed decision about birth, antenatal detection of large for gestational age is essential.

Objective: To investigate the ability of antenatal ultrasound scans to predict large for gestational age at birth.

Study design: In this retrospective cohort study, we analyzed data from a routinely collected database from the West Midlands, United Kingdom. We included pregnancies that had an antenatal ultrasound-estimated fetal weight between 35+0 and 38+0 weeks gestation for any indication and a subgroup where the reason for the scan was that the fetus was suspected to be big. Large for gestational age was defined as >90th customized GROW percentile for estimated fetal weight as well as neonatal weight. In addition, we tested the performance of an uncustomized standard, with Hadlock fetal weight >90th percentile and neonatal weight >4 kg. We calculated diagnostic characteristics for the whole population and groups with different maternal body mass indexes.

Results: The study cohort consisted of 26,527 pregnancies, which, on average, had a scan at 36+4 weeks gestation and delivered 20 days later at a median of 39+3 weeks (interquartile range 15). In total, 2241 (8.4%) of neonates were large for gestational age by customized percentiles, of which 1459 (65.1%) had a scan estimated fetal weight >90th percentile, with a false positive rate of 8.6% and a positive predictive value of 41.0%. In the subgroup of 912 (3.4%) pregnancies scanned for a suspected large fetus, 293 (32.1%) babies were large for gestational age at birth, giving a positive predictive value of 50.3%, with a sensitivity of 77.1% and false positive rate of 36.0%. When comparing subgroups from low (<18.5 kg/m2) to high body mass index (>30 kg/m2), sensitivity increased from 55.6% to 67.8%, false positive rate from 5.2% to 11.5%, and positive predictive value from 32.1% to 42.3%. A total of 2585 (9.7%) babies were macrosomic (birthweight >4 kg), and of these, 1058 (40.9%) were large for gestational age (>90th percentile) antenatally by Hadlock's growth standard, with a false positive rate of 4.9% and a positive predictive value 41.0%. Analysis within subgroups showed better performance by customized than uncustomized standards for low body mass index (<18.5; diagnostic odds ratio, 23.0 vs 6.4) and high body mass index (>30; diagnostic odds ratio, 16.2 vs 8.8).

Conclusion: Late third-trimester ultrasound estimation of fetal weight for any indication has a good ability to identify and predict large for gestational age at birth and improves with the use of a customized standard. The detection rate is better when an ultrasound is performed for a suspected large fetus but at the risk of a higher false positive diagnosis. Our results provide information for women and clinicians to aid antenatal decision-making about the birth of a fetus suspected of being large for gestational age.

Keywords: Hadlock; birthweight; customized; estimated fetal weight; fetal weight; large for gestational age; macrosomia; ultrasound.