Understanding the complexity of p53 in a new era of tumor suppression

Cancer Cell. 2024 May 3:S1535-6108(24)00133-8. doi: 10.1016/j.ccell.2024.04.009. Online ahead of print.

Abstract

p53 was discovered 45 years ago as an SV40 large T antigen binding protein, coded by the most frequently mutated TP53 gene in human cancers. As a transcription factor, p53 is tightly regulated by a rich network of post-translational modifications to execute its diverse functions in tumor suppression. Although early studies established p53-mediated cell-cycle arrest, apoptosis, and senescence as the classic barriers in cancer development, a growing number of new functions of p53 have been discovered and the scope of p53-mediated anti-tumor activity is largely expanded. Here, we review the complexity of different layers of p53 regulation, and the recent advance of the p53 pathway in metabolism, ferroptosis, immunity, and others that contribute to tumor suppression. We also discuss the challenge regarding how to activate p53 function specifically effective in inhibiting tumor growth without harming normal homeostasis for cancer therapy.

Keywords: MDM2; MDMX; apoptosis; cancer treatment; cell competition; cell-cycle arrest; ferroptosis; genome stability; immunity; metabolism; metastasis; p53; p53 mutation; p63; p73; senescence; stem cell dynamics; targeting p53; tumor suppression.

Publication types

  • Review