Smartphone microscopic method for imaging and quantification of microplastics in drinking water

Microsc Res Tech. 2024 May 11. doi: 10.1002/jemt.24596. Online ahead of print.


Analysis of microplastics in drinking water is often challenging due to smaller particle size and low particle count. In this study, we used a low cost and an easy to assemble smartphone microscopic system for imaging and quantitating microplastic particles as small as 20 μm. The system consisted of a spherical sapphire ball lens of 4 mm diameter attached to a smartphone camera as a major imaging component. It also involved pre-concentration of the sample using ZnCl2 solution. The spike recovery and limit of detection of the method in filtered distilled and deionized water samples (n = 9) were 55.6% ± 9.7% and 34 particles/L, respectively. Imaging performance of the microscopic system was similar to a commercial bright field microscopic system. The method was further implemented to examine microplastic particles in commercial bottled and jar water samples (n = 20). The particles count in bottled and jar water samples ranged from 0-91 particles/L to 0-130 particles/L, respectively. In both sample types, particles of diverse shape and size were observed. The particles collected from water samples were further confirmed by FTIR spectra (n = 36), which found 97% of the particles tested were made of plastic material. These findings suggested that the smartphone microscopic system can be implemented as a low-cost alternative for preliminary screening of microplastic in drinking water samples. RESEARCH HIGHLIGHTS: Ball lens based smartphone microscopic method was used for microplastic analysis. Particles of diverse shape and size were found in bottle and jar water samples.

Keywords: limit of detection; microplastic analysis; microplastic contamination; optical microscopy; smartphone microscopy.