Rapamycin prevents cyclophosphamide-induced ovarian follicular loss and potentially inhibits tumour proliferation in a breast cancer xenograft mouse model

Hum Reprod. 2024 May 11:deae085. doi: 10.1093/humrep/deae085. Online ahead of print.

Abstract

Study question: To what extent and via what mechanism does the concomitant administration of rapamycin (a follicle activation pathway inhibitor and antitumour agent) and cyclophosphamide (a highly toxic ovarian anticancer agent) prevent cyclophosphamide-induced ovarian reserve loss and inhibit tumour proliferation in a breast cancer xenograft mouse model?

Summary answer: Daily concomitant administration of rapamycin and a cyclic regimen of cyclophosphamide, which has sufficient antitumour effects as a single agent, suppressed cyclophosphamide-induced primordial follicle loss by inhibiting primordial follicle activation in a breast cancer xenograft mouse model, suggesting the potential of an additive inhibitory effect against tumour proliferation.

What is known already: Cyclophosphamide stimulates primordial follicles by activating the mammalian target of the rapamycin (mTOR) pathway, resulting in the accumulation of primary follicles, most of which undergo apoptosis. Rapamycin, an mTOR inhibitor, regulates primordial follicle activation and exhibits potential inhibitory effects against breast cancer cell proliferation.

Study design, size, duration: To assess ovarian follicular apoptosis, 3 weeks after administering breast cancer cells, 8-week-old mice were randomized into three treatment groups: control, cyclophosphamide, and cyclophosphamide + rapamycin (Cy + Rap) (n = 5 or 6 mice/group). Mice were treated with rapamycin or vehicle control for 1 week, followed by a single dose of cyclophosphamide or vehicle control. Subsequently, the ovaries were resected 24 h after cyclophosphamide administration (short-term treatment groups). To evaluate follicle abundance and the mTOR pathway in ovaries, as well as the antitumour effects and impact on the mTOR pathway in tumours, 8-week-old xenograft breast cancer transplanted mice were randomized into three treatment groups: vehicle control, Cy, and Cy + Rap (n = 6 or 7 mice/group). Rapamycin (5 mg/kg) or the vehicle was administered daily for 29 days. Cyclophosphamide (120 mg/kg) or the vehicle was administered thrice weekly (long-term treatment groups). The tumour diameter was measured weekly. Seven days after the last cyclophosphamide treatment, the ovaries were harvested, fixed, and sectioned (for follicle counting) or frozen (for further analysis). Similarly, the tumours were resected and fixed or frozen.

Participants/materials, setting, methods: Terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) was performed to examine ovarian follicular apoptosis in the short-term treatment groups. All subsequent experiments were conducted in the long-term treatment groups. Tumour growth was evaluated using the tumour volume index. The tumour volume index indicates the relative volume, compared to the volume 3 weeks after tumour cell injection (at treatment initiation) set to 100%. Tumour cell proliferation was evaluated by Ki-67 immunostaining. Activation of the mTOR pathway in tumours was assessed using the protein extracts from tumours and analysed by western blotting. Haematoxylin and eosin staining of ovaries was used to perform differential follicle counts for primordial, primary, secondary, antral, and atretic follicles. Activation of the mTOR pathway in ovaries was assessed using protein extracts from whole ovaries and analysed by western blotting. Localization of mTOR pathway activation within ovaries was assessed by performing anti-phospho-S6 kinase (downstream of mTOR pathway) immunohistochemistry.

Main results and the role of chance: Ovaries of the short-term treatment groups were resected 24 h after cyclophosphamide administration and subjected to TUNEL staining of apoptotic cells. No TUNEL-positive primordial follicles were detected in the control, Cy, and Cy + Rap groups. Conversely, many granulosa cells of growing follicles were TUNEL positive in the Cy group but negative in the control and Cy + Rap groups. All subsequent experimental results were obtained from the long-term treatment groups. The tumour volume index stabilized at a mean of 160-200% in the Cy group and 130% in the Cy + Rap group throughout the treatment period. In contrast, tumours in the vehicle control group grew continuously with a mean tumour volume index of 600%, significantly greater than that of the two treatment groups. Based on the western blot analysis of tumours, the mTOR pathway was activated in the vehicle control group and downregulated in the Cy + Rap group when compared with the control and Cy groups. Ki-67 immunostaining of tumours showed significant inhibition of cell proliferation in the Cy + Rap group when compared with that in the control and Cy groups. The ovarian follicle count revealed that the Cy group had significantly fewer primordial follicles (P < 0.001) than the control group, whereas the Cy + Rap group had significantly higher number of primordial follicles (P < 0.001, 2.5 times) than the Cy group. The ratio of primary to primordial follicles was twice as high in the Cy group than in the control group; however, no significant difference was observed between the control group and the Cy + Rap group. Western blot analysis of ovaries revealed that the mTOR pathway was activated by cyclophosphamide and inhibited by rapamycin. The phospho-S6 kinase (pS6K)-positive primordial follicle rate was 2.7 times higher in the Cy group than in the control group. However, this effect was suppressed to a level similar to the control group in the Cy + Rap group.

Large scale data: None.

Limitations, reasons for caution: The combinatorial treatment of breast cancer tumours with rapamycin and cyclophosphamide elicited inhibitory effects on cell proliferative potential compared to cyclophosphamide monotherapy. However, no statistically significant additive effect was observed on tumour volume. Thus, the beneficial antitumour effect afforded by rapamycin administration on breast cancer could not be definitively proven. Although rapamycin has ovarian-protective effects, it does not fully counteract the ovarian toxicity of cyclophosphamide. Nevertheless, rapamycin is advantageous as an ovarian protective agent as it can be used in combination with other ovarian protective agents, such as hormonal therapy. Hence, in combination with other agents, mTOR inhibitors may be sufficiently ovario-protective against high-dose and cyclic cyclophosphamide regimens.

Wider implications of the findings: Compared with a cyclic cyclophosphamide regimen that replicates human clinical practice under breast cancer-bearing conditions, the combination with rapamycin mitigates the ovarian follicle loss of cyclophosphamide without interfering with the anticipated antitumour effects. Hence, rapamycin may represent a new non-invasive treatment option for cyclophosphamide-induced ovarian dysfunction in breast cancer patients.

Study funding/competing interest(s): This work was not financially supported. The authors declare that they have no conflict of interest.

Keywords: in vivo; breast cancer; cyclophosphamide; fertility preservation; follicle activation; gonadotoxicity; mTOR inhibitor; ovarian reserve; rapamycin; tumour bearing.