CoCoNuTs are a diverse subclass of Type IV restriction systems predicted to target RNA

Elife. 2024 May 13:13:RP94800. doi: 10.7554/eLife.94800.

Abstract

A comprehensive census of McrBC systems, among the most common forms of prokaryotic Type IV restriction systems, followed by phylogenetic analysis, reveals their enormous abundance in diverse prokaryotes and a plethora of genomic associations. We focus on a previously uncharacterized branch, which we denote coiled-coil nuclease tandems (CoCoNuTs) for their salient features: the presence of extensive coiled-coil structures and tandem nucleases. The CoCoNuTs alone show extraordinary variety, with three distinct types and multiple subtypes. All CoCoNuTs contain domains predicted to interact with translation system components, such as OB-folds resembling the SmpB protein that binds bacterial transfer-messenger RNA (tmRNA), YTH-like domains that might recognize methylated tmRNA, tRNA, or rRNA, and RNA-binding Hsp70 chaperone homologs, along with RNases, such as HEPN domains, all suggesting that the CoCoNuTs target RNA. Many CoCoNuTs might additionally target DNA, via McrC nuclease homologs. Additional restriction systems, such as Type I RM, BREX, and Druantia Type III, are frequently encoded in the same predicted superoperons. In many of these superoperons, CoCoNuTs are likely regulated by cyclic nucleotides, possibly, RNA fragments with cyclic termini, that bind associated CARF (CRISPR-Associated Rossmann Fold) domains. We hypothesize that the CoCoNuTs, together with the ancillary restriction factors, employ an echeloned defense strategy analogous to that of Type III CRISPR-Cas systems, in which an immune response eliminating virus DNA and/or RNA is launched first, but then, if it fails, an abortive infection response leading to PCD/dormancy via host RNA cleavage takes over.

Keywords: GTPase; Type IV restriction-modification systems; coiled-coil domains; computational biology; evolutionary biology; immunity; none; nucleases; programmed cell death; systems biology.

Plain language summary

All organisms, from animals to bacteria, are subject to genetic parasites, such as viruses and transposons. Genetic parasites are pieces of nucleic acids (DNA or RNA) that can use a cell’s machinery to copy themselves at the expense of their hosts. This often leads to the host’s demise, so organisms evolved many types of defense mechanisms. One of the most ancient and common forms of defense against viruses and transposons is the targeted restriction of nucleic acids, that is, deployment of host enzymes that can destroy or restrict nucleic acids containing specific sequence motifs or modifications. In bacteria, many of the restriction enzymes targeting parasitic genetic elements are formed by fusions of proteins from the so-called McrBC systems with a protein domain called EVE. EVE and other functionally similar domains are a part of proteins that recognize and bind modified bases in nucleic acids. Enzymes can use the ability of these specificity domains to bind modified bases to detect non-host nucleic acids. Bell et al. conducted a comprehensive computational search for McrBC systems and discovered a large and highly diverse branch of this family with unusual characteristic structural and functional domains. These features include regions that form long alpha-helices (coils) that coil with other alpha-helices (known as coiled-coils), as well as several distinct enzymatic domains that break down nucleic acids (known as nucleases). They call these systems CoCoNuTs (coiled-coiled nuclease tandems). All CoCoNuTs contain domains, including EVE-like ones, which are predicted to interact with components of the RNA-based systems responsible for producing proteins in the cell (translation), suggesting that the CoCoNuTs have an important impact on protein abundance and RNA metabolism. Bell et al.’s findings will be of interest to scientists working on prokaryotic immunity and virulence. Furthermore, similarities between CoCoNuTs and components of eukaryotic RNA-degrading systems suggest evolutionary connections between this diverse family of bacterial predicted RNA restriction systems and RNA regulatory pathways of eukaryotes. Further deciphering the mechanisms of CoCoNuTs could shed light on how certain pathways of RNA metabolism and regulation evolved, and how they may contribute to advances in biotechnology.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Bacteria / genetics
  • Bacteria / metabolism
  • Bacterial Proteins / chemistry
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Phylogeny
  • RNA / chemistry
  • RNA / genetics
  • RNA / metabolism
  • RNA, Bacterial* / chemistry
  • RNA, Bacterial* / genetics
  • RNA, Bacterial* / metabolism

Substances

  • RNA, Bacterial
  • Bacterial Proteins
  • RNA