Host immunity involvement in the outcome of phage therapy against hypervirulent Klebsiella pneumoniae infections

Antimicrob Agents Chemother. 2024 May 14:e0142923. doi: 10.1128/aac.01429-23. Online ahead of print.


Highly encapsulated hypervirulent Klebsiella pneumoniae (hvKp) causes severe infections. Bacteriophage therapy, an antibiotic alternative, effectively treats bacterial infections. Phage φFK1979 encoding polysaccharide depolymerases can target and disarm the capsule of hvKp FK1979, showing promise against FK1979 infection. Resistant strains induced by φFK1979 are possibly eliminated by host immunity and new phage phiR3 targeting them. We constructed varied immunocompromised FK1979 infection mouse models to assess the therapy efficacy of φFK1979 alone or in combination with phiR3. Survival rates, bacterial loads, histopathology, inflammation, and immune cell distribution of mice were studied. Prompt and adequate administration of φFK1979, rather than phiR3, significantly improved survival rates in mice with different immune statuses. However, immunocompromised mice showed lower efficacy due to reduced tolerance to low-virulence φFK1979-resistant bacteria compared to immunocompetent mice. Adding phiR3 sequentially greatly enhanced therapy efficacy for them, leading to increased survival rates and notable improvements in pathology and inflammation. Immunocompetent mice exhibited the most favorable response to φFK1979 monotherapy, as their immune system cleared φFK1979-resistant bacteria while avoiding a robust response to phiR3 combating φFK1979-resistant bacteria. This study revealed host immunity involvement in the outcome of phage therapy against infections and introduced, for the first time, personalized phage therapy strategies for hvKp-infected mice with varying immune statuses.IMPORTANCEHypervirulent Klebsiella pneumoniae (hvKp), with high capsular polysaccharide production, can cause severe invasive infections. Capsule-targeting phage poses the potential to fight against hvKp. We previously elucidated that the capsule-targeting phage induces resistance in hvKp, while phage-resistant strains exhibit sensitivity to host innate immunity and new phages targeting them. This indicated that phage-resistant strains can be eliminated by the immune system in immunocompetent patients, whereas they may require treatment with phages targeting resistant bacteria in immunocompromised patients. HvKp can infect individuals with varying immune statuses, including both immunocompetent and immunocompromised/deficient patients. This study, for the first time, developed personalized phage therapy strategies for hvKp-infected mice with different immune statuses, optimizing phage therapy against hvKp infections. This research is expected to provide a theoretical foundation and novel insights for clinical phage therapy against hvKp infections, offering significant societal benefits and clinical value.

Keywords: capsule; host immunity; hypervirulent K. pneumoniae; immunocompetent; immunodeficient; macrophage; neutrophil; phage therapy.