The adsorption-desorption behavior of chlorothalonil in the cuticles of apple and red jujube

Sci Total Environ. 2024 May 14:935:173195. doi: 10.1016/j.scitotenv.2024.173195. Online ahead of print.

Abstract

The distribution fate of chlorothalonil (CHT) in the environment (soil and water) and fruits is controlled by the capacity of cuticles to adsorb and desorb CHT, which directly affects the safety of both the environment and fruits. Batch experiments were conducted to reveal the adsorption-desorption behaviors of CHT in the cuticles of apple and red jujube. The adsorption kinetics showed that both physisorption and chemisorption occurred during the adsorption process. Furthermore, the isothermal adsorption of CHT in the fruit cuticles followed the Freundlich model. The thermodynamic parameters (ΔG ≤ -26.16 kJ/mol, ΔH ≥ 31.05 kJ/mol, ΔS ≥ 0.20 kJ/(mol K) showed that the whole CHT adsorption process was spontaneous, and the hydrophobic interaction was predominant. The CHT adsorption capacity of the apple cuticle was higher than that of the red jujube cuticle, potentially due to the significantly higher alkanes content of apples than that of red jujubes. An appropriate ionic strength (0.01 moL/L) could induce a higher adsorption capacity. In addition, the desorption kinetics were shown to conform to a Quasi-first-order model, meaning that not all the adsorbed CHT could be easily desorbed. The desorption ratios in apple and red jujube cuticles were 41.38% and 35.64%, respectively. The results of Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy further confirmed that CHT could be adsorbed and retained in the fruit cuticles. Investigating the adsorption-desorption behavior of CHT in the apple and red jujube cuticles allowed to determine the ratio of its final distribution in the fruits and environment, providing a theoretical basis to evaluate the risk of residue pesticide.

Keywords: Adsorption; Chlorothalonil; Cuticle; Desorption; Environment; Fruit.