Emerging Chemodynamic Nanotherapeutics for Cancer Treatment

Adv Healthc Mater. 2024 May 16:e2400809. doi: 10.1002/adhm.202400809. Online ahead of print.


Chemodynamic therapy (CDT) has emerged as a transformative paradigm in the realm of reactive oxygen species -mediated cancer therapies, exhibiting its potential as a sophisticated strategy for precise and effective tumor treatment. CDT primarily relies on metal ions and hydrogen peroxide to initiate Fenton or Fenton-like reactions, generating cytotoxic hydroxyl radicals. Its notable advantages in cancer treatment are demonstrated, including tumor specificity, autonomy from external triggers, and a favorable side-effect profile. Recent advancements in nanomedicine are devoted to enhancing CDT, promising a comprehensive optimization of CDT efficacy. This review systematically elucidates cutting-edge achievements in chemodynamic nanotherapeutics, exploring strategies for enhanced Fenton or Fenton-like reactions, improved tumor microenvironment modulation, and precise regulation in energy metabolism. Moreover, a detailed analysis of diverse CDT-mediated combination therapies is provided. Finally, the review concludes with a comprehensive discussion of the prospects and intrinsic challenges to the application of chemodynamic nanotherapeutics in the domain of cancer treatment.

Keywords: cancer treatment; chemodynamic therapy; combination therapies; fenton or fenton‐like reactions; nanotherapeutics.

Publication types

  • Review