In Search of the Best Low-Cost Methods for Efficient Screening of Conformers

J Phys Chem A. 2024 May 30;128(21):4391-4400. doi: 10.1021/acs.jpca.4c01407. Epub 2024 May 16.

Abstract

Locating the lowest energy conformer is crucial for the accurate computation of equilibrium properties of molecular systems. This paper examines the performance of efficient low-cost methods in terms of the alignment and relative energies of their energy minima against the benchmark revDSD-PBEP86-D4/def2-TZVPP//MP2/cc-pVTZ potential energy surface. The low-cost methods considered include GFN-FF, GFN2-xTB, DFTB3, HF-3c, B97-3c, PBEh-3c, and r2SCAN-3c composite methods against a diverse test set of 20 compounds including alkanes, perfluoroalkyl molecules, peptides, open-shell radicals, and Zn(II) complexes of varying sizes. The "3c" composite methods are generally more accurate, but are at least 2-3 orders of magnitude more expensive than tight-binding methods which have energy minima that align well with the benchmark potential energy surface. The findings of this paper were further exploited to introduce a simple strategy involving Grimme's CENSO energy-sorting algorithm that resulted in up to an order of magnitude reduction in computational time for locating the lowest energy conformer on the revDSD-PBEP86-D4/def2-TZVPP//MP2/cc-pVTZ surface.