Large deviations in statistics of the convex hull of passive and active particles: A theoretical study

Phys Rev E. 2024 Apr;109(4-1):044120. doi: 10.1103/PhysRevE.109.044120.

Abstract

We investigate analytically the distribution tails of the area A and perimeter L of a convex hull for different types of planar random walks. For N noninteracting Brownian motions of duration T we find that the large-L and -A tails behave as P(L)∼e^{-b_{N}L^{2}/DT} and P(A)∼e^{-c_{N}A/DT}, while the small-L and -A tails behave as P(L)∼e^{-d_{N}DT/L^{2}} and P(A)∼e^{-e_{N}DT/A}, where D is the diffusion coefficient. We calculated all of the coefficients (b_{N},c_{N},d_{N},e_{N}) exactly. Strikingly, we find that b_{N} and c_{N} are independent of N for N≥3 and N≥4, respectively. We find that the large-L (A) tails are dominated by a single, most probable realization that attains the desired L (A). The left tails are dominated by the survival probability of the particles inside a circle of appropriate size. For active particles and at long times, we find that large-L and -A tails are given by P(L)∼e^{-TΨ_{N}^{per}(L/T)} and P(A)∼e^{-TΨ_{N}^{area}(sqrt[A]/T)}, respectively. We calculate the rate functions Ψ_{N} exactly and find that they exhibit multiple singularities. We interpret these as DPTs of first order. We extended several of these results to dimensions d>2. Our analytic predictions display excellent agreement with existing results that were obtained from extensive numerical simulations.