Modeling of a light-fueled self-paddling boat with a liquid crystal elastomer-based motor

Phys Rev E. 2024 Apr;109(4-1):044705. doi: 10.1103/PhysRevE.109.044705.

Abstract

Active materials possess unique properties of being able to respond autonomously to external stimuli, yet realizing and regulating the motion behavior of active machines remains a major challenge. Conventional control approaches, including sensor control and external device control, are both complex and difficult to implement. In contrast, active materials-based self-oscillators offer distinct properties such as periodic motion and ease of regulation. Inspired by paddle boats, we have proposed a conceptual light-fueled self-paddling boat with a photothermally responsive liquid crystal elastomer (LCE)-based motor that operates under steady illumination and incorporates an LCE fiber. Based on the well-established dynamic LCE model and rotation dynamics, the dynamic equations for governing the self-paddling of the LCE-steered boat are derived, and the driving torque of the LCE-based motor and the paddling velocity of the LCE-steered boat are formulated successively. The numerical results show that two motion modes of the boat under steady illumination: the static mode and the self-paddling mode. The self-paddling regime arises from the competition between the light-fueled driving torque and the frictional torque. Moreover, the critical conditions required to trigger the self-paddling are quantitatively examined as well as the significant system parameters affecting the driving torque, angular velocity, and paddling velocity. The proposed conceptual light-fueled self-paddling LCE-steered boat exhibits benefits including customizable size and being untethered and ambient powered, which provides valuable insights into the design and application of micromachines, soft robotics, energy harvesters, and beyond.