Noncombustible gel polymer electrolyte inspired by bio-radicalchemistry for high voltage and high safety Ni-rich lithium batteries

J Colloid Interface Sci. 2024 Sep 15:670:114-123. doi: 10.1016/j.jcis.2024.05.025. Epub 2024 May 7.

Abstract

For high energy density lithium-ion batteries (LIBs) with nickel-rich ternary cathodes, the chemical degradation of electrolytes caused by free radical reactions and the hazards of thermal runaway have always been significant challenges. Inspired by the free radical scavenging of living organisms and multiphase synergistic flame retardant mechanism, we innovatively designed and prepared a multifunctional flame retardant HCCP-TMP that combines flame retardancy and free radical scavenging by combining hindered amine and cyclophosphazene. Only 1 wt% HCCP-TMP can make the polyacrylate-based gel polymer electrolyte (GPE) incombustible. Moreover, the equipped NCM811//Graphite pouch cells don't exhibit combustion behavior after thermal runaway and can resist mechanical abuse. Based on the above noncombustible GPE, the NCM811//Li battery exhibits capacity retention rate of 82.2 % after 100 cycles at a current density of 2 C and in the voltage range of 3.0-4.7 V, exhibiting excellent cyclability under high voltage. This simple molecular design simultaneously improves the fire safety and high voltage stability, demonstrating enormous application potential in the field of advanced LIBs with high safety and high energy density.

Keywords: Flame retardant; Gel polymer electrolyte; High voltage; Ni-rich cathode; Radical chemistry.